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Free radicals are regularly formed in the human body and are often associated with tissue injury. 
They are harmful to the body and damage all components of cells, including proteins, DNA, and 
cell membranes. Antioxidants protect the body from damage caused by free radicals. The lack 
of balance in production of free radicals and the ability of the body to negate their dangerous 
effects through neutralization by antioxidants produce oxidative stress (OS). OS has an important 
role in the pathophysiology of several kidney diseases. There are many experimental evidences 
suggesting key role of OS and inflammation on renal failure. There are many reports which 
suggest that the use of antioxidants help in the disease prevention. Therefore, it is very important 
to understand the reaction mechanism of antioxidant with the free radicals. This review explains 
the relationship between free radicals and risk of kidney diseases, the role of antioxidants in the 
diseases prevention and reaction mechanisms of the antioxidants.
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Introduction
Free radicals are regularly formed in the hu-
man body and often associated with tissue 
injury. Antioxidants are free radical scaven-
gers that react with the free radicals and de-
lay the cellular damage. The lack of balance 
in production of free radicals and the ability 
of the body to negate their dangerous effects 
through neutralization by antioxidants pro-
duce oxidative stress (OS). OS has an im-
portant role in the pathophysiology of sev-
eral kidney diseases. There are many exper-
imental evidences suggesting a key role for 
OS and inflammation on renal failure (1,2). 
There are many reports which suggest that 
the use of antioxidants help in the disease 
prevention (3-5). Hence, it is very import-
ant to realize the reaction mechanism of 
antioxidant with the free radicals. To realize 
the mechanism of action of antioxidants, it 
is required to realize the production of free 
radicals and their harmful reactions. This 
review explains the generation of free radi-
cals and the damages that free radicals may 
create and the reaction mechanisms of anti-
oxidants. Also, the relation between OS and 
risk of kidney diseases and the role of antiox-
idants in prevention and treatment of these 
diseases are discussed.

Core tip 
Antioxidants protect the body from damage 
caused by free radicals. The lack of balance 
in production of free radicals and the ability 
of the body to negate their dangerous effects 
through neutralization by antioxidants 
produce oxidative stress (OS). OS has an 
important role in the pathophysiology of 
several kidney diseases. There are many 
experimental evidences suggesting key role 
of OS and inflammation on renal failure. 
There are many reports which suggest that 
the use of antioxidants help in the disease 
prevention. Therefore, it is very important 
to understand the reaction mechanism 
of antioxidant with the free radicals. This 
review explains the relationship between 
free radicals and risk of kidney diseases, 
the role of antioxidants in the diseases 
prevention and reaction mechanisms of the 
antioxidants.

Materials and Methods
For this review, we used a variety of sourc-
es by search ing through PubMed/Medline, 
Scopus, EMBASE, EBSCO and directory of 
open access journals (DOAJ). The search 
was conducted, using combination of the 
following key words and, or their equiva-
lents; free radicals, reactive oxygen species, 

http annresantioxidants.com
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antioxidants, OS and renal disease.

Generation of free radicals in body
Free radicals are molecules with free unpaired electrons. 
They are very unstable and highly reactive. These com-
pounds are regularly formed in the human body and are 
often associated with tissue injury. The majority of free 
radicals are oxygen radicals and other reactive oxygen spe-
cies (ROS) that are listed in Table 1 (6).
ROS are produced in mitochondrial electron transport 
system, peroxisomal fatty acids, cytochrome P-450, and 
phagocytic cells. Drugs, illness, stress, pollution, cigarette 
smoke, and even exercise can increase free radical expo-
sure. The sources of free radicals formation are showed in 
Table 2 (7).
Superoxide is produced in mitochondrial electron trans-
port chain by a variety of enzymatic processes such as the 
NAD(P)H oxidase (Eq. 1).

 

The O2
•− is then rapidly converted into H2O2 (Eq. 2) by 

SOD.

 

•OH is also produced from O2
•¯and H2O2 via ‘respiratory 

burst’ by Fenton (Eq. 3) and / or Haber-
Weiss reactions (Eq. 4) (8).

 

NO is generated from arginine by an enzymatic processes 
(Eq. 5). The NO• and O2

•− react together to produce per-
oxynitrite (ONOO) (9).

 

 

Damaging reactions of free radicals in the body
A vast array of molecules are in the human body that more 
susceptible to free radical attacks than others. These in-
clude fats, cellular membranes, DNA, RNA, proteins, car-
bohydrates and vitamins. 

Table 1. Types of the free radicals

Name Symbol

Hydroxyl radical •OH
Hydrogen peroxide H2O2

Peroxyl radical ROO•

Lipid hydroperoxide LOO•

Singlet oxygen 1O2

Superoxide ion O2
•−

Nitric oxide NO•

Peroxynitrite ONOO−

Table 2. The Sources free radical formation in the biological system

Sources of free radicals Mechanism

Transition metal ions Copper and iron facilitate hydroxyl radical formation

Inflammation Free radicals released by activated phagocytes

Mitochondrial electron transport Leakage of superoxide due to inefficient reduction of oxygen

Drug metabolism Free radical intermediates created during metabolism

Enzymes like xanthine oxidase Release superoxide during reperfusion of ischemic tissues

Radiation X-rays and ultraviolet (UV) rays
Cigarette smoking Gas phase reach in free radicals

Reaction of hydroxyl radical with guanine and the sugar 
moiety of DNA are shown in Scheme 1 and 2 (10).
Lipid peroxidation is important in vivo and has been wide-
ly associated with the tissue injuries and diseases (11). The 
mechanism of lipid peroxidation is shown in Eq. 7-10. 
Generally lipid hydroperoxides are broken down to alde-
hydes. Commonly aldehydes are biologically active com-
pounds, which attack to the other parts of the cell (12,13). 

 

Antioxidants: free radical scavengers
The concept of biological antioxidant relation to any com-
pound that, when existing at a lower concentration com-
pared to that of an oxidizable substrate, is able to either 
delay or prevent the oxidation of the substrate (14). Anti-
oxidant roles include DNA mutations, lowering OS, ma-
lignant transformations, as well as other parameters of cell 
damage.
The body has a defense system for prevention of free rad-
ical damage. The first identified types of antioxidant de-
fense systems are those that prevent ROS occurrence and 
those that block or capture the radicals that are formed. 
Another antioxidant system of the cell is represented by 
repair processes which remove the damaged biomole-
cules before their aggregation enables alteration of cell 
metabolism (15). The repair system intervention consists 
removing oxidized proteins by proteolytic systems, repair-
ing oxidatively damaged nucleic acids by specific enzymes 
and repairing oxidized lipids using phospholipases, perox-
idases or acyltransferases (16). 
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Antioxidants include the enzymatic antioxidants and non-
enzymatic antioxidants. These two types of antioxidants 
modulate the free radical reactions. Body protects itself 
from free radicals via enzymatic antioxidant mechanisms 
(17). The antioxidant enzymes decrease the levels of lip-
id hydroperoxide and H2O2, therefore they are important 
in the prevention of lipid peroxidation and keeping the 
structure and function of cell membranes. Examples of the 
enzymatic antioxidants are CAT, GSHPx, SOD, and perox-
iredoxin (Table 3) (18,19).
The non-enzymatic antioxidants are of two kinds, the 
natural antioxidants and the synthetic antioxidants that 
include vitamins (vitamin E, C, A), bioflavonoids, carot-
enoids, hydroxycinnamates, theaflavin, theaflavin-3-gal-
late, allicin, piperine and curcumin. In Schemes 3 and 4 
the mechanism of radical scavenging activity of vitamin A, 
allicin and 2-propenesulfenic acid are shown.
Synthetic antioxidants are added to foods that are sensitive 
to oxidation to prevent oxidative rancidity. Oxidative ran-
cidity results in demolition of vitamins and essential fatty 
acids, degradation of flavor, and creation of free radicals 
that cause stress and damage to our bodies. Synthetic anti-
oxidants which have phenolic structure include butylated 
hydroxyanisole (BHA), butylated hydroxytoluene (BHT) 
and gallic acid esters (23). The antioxidant mechanisms of 
BHT are shown in Scheme 5.

Oxidative stress and diseases 
OS is defined as unbalance between the production of free 
radicals and the ability of the body to counteract their dan-
gerous effects through neutralization by antioxidants (24). 
In certain pathological conditions, increased production 
of ROS and depletion of antioxidants in defense system 
leads to enhanced ROS activity and OS, resulting tissue 

damage. OS causes tissue damage by different mechanisms 
including production of lipid peroxidation, DNA damage, 
and protein modification. These processes have been re-
lated with the pathogenesis of several systemic diseases 
such as hypertension, diabetes mellitus, and hypercholes-
terolemia and also kidney disease. In recent years, OS has 
become one of the most beloved topics in research of mo-
lecular mechanism of renal diseases. 

Oxidative stress and kidney damage
The kidney is a body part highly vulnerable to damage 
caused by ROS, likely due to the plenty of long chain poly-
unsaturated fatty acids in the structure of renal lipids. In 
recent years, OS has been converted as one of the most 
popular subjects in research of molecular mechanism of 
renal disease.
Factors that induce OS in kidney include systemic diseases 
such as hypertension, diabetes mellitus, hypercholesterol-
emia, infection, chemotherapeutics, radiocontrast agents 
environmental toxins, radiation, antibiotics, smoking, oc-
cupational chemicals, as well as alcohol consumption. In 
continuing, we will discuss the relationship between these 
factors and OS in kidney.

Diabetes mellitus and its association with oxidative 
stress in kidney
Recent studies have shown that free radicals and kidney 
damage are associated with diabetic nephropathy. Accord-
ing to this suggestion, diabetes leads to increased glomer-
ular hyperfiltration and a resultant increased glomerular 
pressure. These lead to damage to glomerular cells and 
to development of focal and segmental glomerulosclero-
sis (25,26). Angiotensin II inhibitors decrease glomerular 
pressure and inhibit albuminuria. Increased angiotensin II 

  

Scheme 1. Reaction of hydroxyl radical with guanine. Scheme 2. Reaction of hydroxyl radical with the sugar moiety of DNA.

Table 3. Enzymatic antioxidants, their cellular locations and the reactions they carry-out

Enzymatic antioxidant Cellular location Substrate Action

GSH Cytosol H2O2 H2O2+GSH→GSSG+ H2O

CAT Peroxisomes cytosol H2O2 2H2O2→ O2+ H2O

Prx–I Cytosol H2O2 H2O2+TrxS2→Trx(Sh)2+ H2O

Mn/Cu/Zn SOD Mitochondrial matrix (Mn SOD) cytosol (Cu/Zn SOD) O2
•− O2

•−→ H2O2
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level induces OS through activation of NADPH oxidase, 
stimulating inflammatory cytokines, and so forth (27,28). 
Recently, researches have shown that hyperglycemia-in-
duced OS has role in the pathophysiology of diabetic ne-
phropathy. Lipoic acid as antioxidant improves albumin-
uria and pathology in diabetes by decrease of OS. Lipoic 
acid has antioxidant potential and the ability of inhibiting 
lipid peroxidation (29).
Increased blood glucose raises glycosylation of circulator 
and cellular protein and may incept a series of autoxida-
tion reactions that culminate in the production and accu-
mulation of advanced glycosylation end-products (AGEs) 
in tissues. The AGEs have oxidizing potential and raise 
tissue damage by oxygen-free radicals (30).

Hypertension, hypercholesterolemia, fatness, and 
aging associated with oxidative stress in kidney
Hypertension is one of the main reasons of development 
of renal failure. Basic cause of this pathology is OS. The 
most common reason of secondary hypertension is renal 

 

Scheme 3. Mechanism of radical scavenging activity of vitamin A (20).

Scheme 4. Mechanism for the radical-trapping activity of a) allicin 
(21) and b) 2-propenesulfenic acid (22).

Scheme 5. The antioxidant mechanisms of BHT.

 

 

artery stenosis that may lead to decrease of renal function 
and ischemic nephropathy. There is a relation between hy-
poperfusion and atherosclerosis to interactively increased 
OS, inflammation and tubular injury in the stenotic 
kidney (31). 
High-fat diet-induced obesity leads to increased hepatic, 
cardiac and renal tissue OS, which is accompanied by re-
duction in the antioxidant enzymes activities and glutathi-
one levels that have relation with the increase in MDA and 
protein carbonyl (PCO) levels (32).
Monocyte chemoattractant protein-1 (MCP-1) is a potent 
stimulator of macrophage recruitment. It is increased in 
adipose tissue in obesity and in diabetic kidneys, suggest-
ing that inflammation of these tissues may be MCP-1-de-
pendent (33). Thus we can conclude from these results 
that macrophages are the reason of increased OS and renal 
injury in diabetes and obesity-induced renal injury.
Aging is linked with increased OS. Aging cause changes in 
the kidney such as excessive fibrosis. An increase in apop-
tosis in cells that control healthy renal functions are often 
related to excess OS (34). At a molecular level, with old 
increased mutations in nuclear and mitochondrial DNA 
(mtDNA), increased lipofuscin and AGEs, increased OS, 
and increased apoptosis have been identified. Proximal 
tubular cells have large numbers of mitochondria and are 
the most reliant upon oxidative phosphorylation and most 
active to oxidant-induced apoptosis and mutations (35). 
Recent researches have shown that anti-aging gen, klotho, 
has role in renal aging and OS-induced renal damage.
 
Urinary obstruction, urolithiasis, infection, ischemia 
reperfusion injury, transplantation of kidney, are 
associated with oxidative stress in kidney
Most experimental and clinical researches have shown that 
OS is increased in kidney and systemic circulation. It has 
been reported that the actions of catalase and manganese 
superoxide dismutase were raised in early stage of ethylene 
glycol-induced urolithiasis model in rats. In this experi-
ment, the probable mechanism that leads to free radical 
raise in the kidney may be different in the course of eth-
ylene glycol-induced urolithiasis. Primarily systemic cir-
culation may bring the toxic substances to the kidney, and 
finally these substances lead to generate free radicals. In 
the late step, progressive accumulation of leukocytes and 
imperfect antioxidant enzyme activities may cause kidney 
to remain under huge amount of OS (36,37). In experi-
mental urolithiasis studies have shown that decreased an-
tioxidant enzyme activities and involvement of NFκB and 
p38-MAPK (mitogen-activated protein kinase) signaling 
pathways are related to OS in rat kidney (38-41). 
Urinary obstruction and ureteral obstruction owing to 
urolithiasis is a general urological difficulty seen in urolo-
gy practice. Unilateral ureteral obstruction (UUO) causes 
decreased renal CAT and MnSOD protein. UUO-induced 
nephrotoxicity and renal fibrosis lead to increased OS in 
kidney.
Infection is another agent that induces OS in kidney. There 
are many experiments showing that increased OS and re-



Free radicals and risk of kidney diseases

 Annals of Research in Antioxidants   5 Volume 1, Issue 1, January 2016

duced antioxidant defense mechanisms and antioxidant 
enzyme systems in kidney may be due to infection (42-45).
ROS are important mediators that have damaging effects 
on various organs including kidney during ischemia 
reperfusion (IR) injury. OS also has a role as a mediator of 
injury in chronic allograft tubular atrophy and interstitial 
fibrosis in rat kidney (46). 
Renal transplantation is associated with increased OS 
in kidney in human and animals. Pre-transplant and 
post-transplant conditions lead to OS increases in trans-
planted kidney. If there is preexisting diseases such as in-
flammation, chronic kidney failure, and diabetes mellitus, 
kidneys are more sensitive to OS during reperfusion in-
jury. Postoperative immunosuppressive agents are among 
many risk factors of increased OS in kidney (47).

Antineoplastic agents, antibiotics, immunosuppressant 
drugs, analgesics, nonsteroidal anti-inflammatory 
drugs, and radiocontrast agents are associated with 
oxidative stress in kidney
Antineoplastic agents are used for the treatment of meta-
static cancers. Excess ROS production and depressed an-
tioxidant defense mechanism are responsible for nephro-
toxicity. Cisplatin is the well-known and used antineoplas-
tic and nephrotoxic agent. Other nephrotoxic anticancer 
agents are carboplatin, methotrexate, doxorubicin, cyclo-
sporine and adriamycin. 
Antibiotics are nephrotoxic agents that cause induction of 
OS and depletion of antioxidant enzyme activities in kid-
ney. Researchers showed the protective effects of antioxi-
dants and reactive oxygen scavenger agents against genta-
micin-induced nephrotoxicity (48-50).
Immunosuppressants such as sirolimus and cyclosporine 
lead to nephrotoxicity via OS (51-60).
Analgesics, particularly paracetamol and nonsteroidal 
anti-inflammatory drugs (NSAIDs) are extensively used 
throughout the world. Numerous in vitro and in vivo 
studies showed that analgesics nephrotoxicity is lead to in-
creased ROS in kidney (58-60).
Contrast-induced nephropathy (CIN) that is used in imag-
ing procedures is a main clinical concern. CIN is the third 
main common cause of acute kidney injury in hospitalized 
patients (61). Experimental in vitro and vivo researches 
illustrate raised hypoxia and the formation of ROS inside 
the kidney following the administration of iodinate con-
trast media. The use of N-acetyl cysteine and bicarbonate 
infusion as ROS scavengers lead to reduced ROS in kidney.

Alcohol, smoking, environmental toxins, irradiation 
and mobile phones associated with oxidative stress 
in kidney
Ethanol and its metabolites are exorcised into urine, and 
their amounts in the urine are higher than that of the blood 
and the liver. Chronic alcohol administration reduces the 
renal tubular reabsorption and reduces renal function. 
Functional abnormalities of renal tubules may be related 
with ethanol-induced changes in membrane composition 
and lipid peroxidation. 

A result of industry is increased air pollution that is an-
other life menacing health problem (62). The effect of the 
pathological changes of diesel exhaust particles (DEPs) on 
systolic blood pressure (SBP), systemic inflammation, OS, 
and morphological alterations in lungs, heart, liver, and 
kidneys in Wistar rats have been shown. So that DEPs lead 
to inflammation especially in lungs and pulmonary tissue, 
and these pathological changes are attributed to increased 
OS and inflammatory cytokines in these tissues (63). Lead 
and cadmium nephrotoxicity are also associated with in-
crease OS in kidney (64,65).
Radiation is an important reason of OS, radiation is com-
monly used for diagnostic and therapeutic purposes. 
Chronic OS after total body irradiation leads to radiation 
nephropathy in rats. The effect of extremely low-frequen-
cy electromagnetic field (ELF-EMF) with pulse trains ex-
posure on lipid peroxidation has been shown to lead to 
OS in the rat liver and kidney tissue. The flow cytometric 
data proposed a possible association between the exposure 
to magnetic field and the cell death; however, there were 
significantly lower necrotic cell percentages in experimen-
tal animals compared to either unexposed (66). These 
results showed the inductive effect of radiation on OS in 
kidney.
For the last two decades, a large number of studies have 
investigated the effects of mobile phone radiation on the 
human and animal. Male reproductive system is among 
the most affected system (67,68). Increased OS plays a 
main role in radiofrequency-electromagnetic-waves- (RF-
EMW) induced tissue damage. 

Conclusion 
There is many literatures concerning the association be-
tween the OS and renal diseases. Systemic diseases such 
as diabetes mellitus, hypertension, and hypercholester-
olemia; antibiotics, infection; radiocontrast agents and 
chemotherapeutics; and environmental toxins, radia-
tion, occupational chemicals, smoking, as well as alcohol 
consumption are associated with induction of OS in the 
kidney. The kidney is a body part highly vulnerable to 
damage caused by ROS, due to the plenty of long chain 
polyunsaturated fatty acids in the structure of renal lipids. 
Antioxidants have been shown to be effective in animals 
for protecting kidney. Antioxidant may prevent the OS by 
peroxidation, inhibiting free radicals and also via other 
mechanism which can inhibit diseases.
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